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RESUMEN

El objetivo de este art́ıculo es ofrecer una introducción cualitativa a la teoŕıa

de la Inflación Cosmólogica y su relación con las observaciones cosmológicas

actuales. Inflación resuelve algunos de los problemas fundamentales que de-

saf́ıan al modelo estándar de la cosmoloǵıa (Big Bang), por ejemplo, el prob-

lema de la Planicidad, Horizonte y la inexistencia de Monopolos, y además de

resolver estos problemas, explica el origen de la estructura a gran escala del

Universo, como son las galaxias. Se describen las caracteŕısticas generales de

esta solución llevada a cabo por un campo escalar. Por último, con el uso de

recientes (y futuros) estudios, se presentan constricciones de los parámetros

inflacionarios (ns, r) que nos permitirán realizar la conexión entre la teoŕıa y

las observaciones cosmológicas. De ésta manera, con los últimos resultados

observacionales, es posible elegir o al menos limitar el modelo inflacionario

correcto, parametrizado por el potencial de campo escalar V (φ).

ABSTRACT

The aim of this paper is to provide a qualitative introduction to the Inflatio-

nary theory and its relation with current cosmological observations. Inflation

solves some of the fundamental problems which challenge the Standard Big

Bang cosmology i.e. Flatness, Horizon and Monopole problem, and addition-

ally explains the initial conditions for the Large-Scale Structure observed in

the Universe, such as galaxies. We describe the general properties of this

solution carried out by a single scalar field. Finally, with the use of cur-

rent and future surveys, we show constraints on the Inflationary parameters

(ns, r) which allow us to make the connection between the theoretical and

observational cosmology. In this way, with the latest observational results,

it is possible to choose or at least to constrain the right Inflationary model,

parameterised by the scalar field potential V (φ).

Key Words: cosmology: cosmological parameters — cosmology: observations

— cosmology: inflation

1. INTRODUCTION

Nowadays, the Standard Big Bang (SBB) cosmology is the most accepted

model describing the central features of the observed Universe. This model

has been successfully proved on cosmological levels, for instance, numerical

simulations on the structure formation of galaxies, galaxy clusters and so on
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are in good agreement with astronomical observations (Tegmark et al. 2001;

Springel et al. 2005). The SBB model also predicts the fluctuations on the

temperature observed in the Cosmic Microwave Background radiation (CMB)

with high degree of accuracy: inhomogeneities of about one part in one hun-

dred thousand (Komatsu et al. 2011). These two predictions, amongst many

others, are the great success of the SBB cosmology. Nevertheless, when we

look at cosmological observations, there might seem to exist certain inconsis-

tencies or unexplained features in contrast with expected by the theory. Some

of these unsatisfactory aspects led to the emergence of the Inflationary model

(Guth 1981; Linde 1982, 1983; Albrecht & Steinhardt 1982).

In this work, we briefly present some of the relevant shortcomings the stan-

dard cosmology is dealing with and a short review is carried out about the

scalar fields as promising solution. Moreover, it is shown how an inflationary

single-field model can be completely described by only specifying its potential

form V (φ). Based on the slow-roll approximation, it is found that the obser-

vational parameters which allow us to make the connexion with experiments

are given by: the amplitude of density perturbation δH , the scalar spectral

index ns and the tensor-to-scalar ratio r. Finally, the theoretical predictions

for different scalar field potentials are shown and compared with current ob-

servational data on the phase-space parameter ns − r, thus, constraining the

number of candidates and making predictions on the shape of V (φ).

2. PROBLEMS IN THE SBB MODEL

Before starting with the theoretical description, let us consider some as-

sumptions on which the SBB model is built (Coles & Lucchin 1995):

1) The physical laws at the present time can be extrapolated further back

in time and also be considered as valid in the early Universe. In this context,

gravity is described by the theory of General Relativity without a cosmological

constant (Λ) up to the Plank era.

2) The cosmological principle holds: “There do not exist preferred places

in the Universe”. This is telling us that the properties of the Universe at

large-scale must be the homogeneity and isotropy, both of them encoded on

the Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θ dφ2)

]
, (1)

where (t, r, θ, φ) describe the time-polar coordinates; the spatial curvature is

given by the constant k and the scale-factor a(t) represents the physical size

of the Universe.

3) The anisotropic Universe is well described by a linear expansion of the

metric about the FRW background:

gµν(x, t) = gFRWµν (x, t) + hµν(x, t). (2)

To avoid long calculations and make this article accessible to young scien-

tists, many technical details have been omitted or simplified; we encourage the
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reader to check out the vast amount of literature about the Inflationary the-

ory (Liddle & Lyth 2000; Liddle 1999; Kolb & Turner 1994; Dodelson 2003;

Linde 1990).

To describe the general properties of the Universe, we assume its dynamics

is governed by a source treated as a perfect fluid with pressure p(t) and density

ρ(t). Both quantities may often be related via an equation of state p = p(ρ).

Some of the well studied cases are

p =
ρ

3
radiation,

p = 0 dust, (3)

p = −ρ Λ.

The Einstein equations for these kind of constituents, neglecting the cosmo-

logical constant Λ contribution, are given by:

The Friedmann equation

H2 ≡ 8π

3m2
Pl

ρ− k

a2
, (4)

and the acceleration equation

ä

a
= − 4π

3m2
Pl

(ρ+ 3p). (5)

The energy conservation for the fluids is described by the fluid equation

ρ̇+ 3H(ρ+ p) = 0, (6)

where overdots mean time derivative and H ≡ ȧ/a defines the Hubble para-

meter. Hereafter we employ natural units c = h̄ = 1; the Planck mass mPl is

related with the gravitational constant G through G ≡ m−2
Pl .

We notice, from (4), that for a particular Hubble parameter there exists

a particular density for which the universe is spatially flat (k = 0). This is

known as the critical density ρc and is given by

ρc(t) =
3m2

PlH
2

8π
, (7)

where ρc is a function of time due to the presence of H. In particular, its

present value is denoted as ρc,0 = 1.88h2 × 10−26 kg m−3, or in terms of

more convenient units taking into account large scales in the Universe, ρc,0 =

2.78h−1 ×1011M�/(h
−1Mpc)3; with the solar mass denoted by M� = 1.988×

1033g and h parameterises the present value of the Hubble parameter as

H0 = 100h km s−1Mpc−1 =
h

3000
Mpc−1. (8)

The latest value for the Hubble parameter obtained by the Hubble Space Tele-

scope is quoted to be (Riess 2009)
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H0 = 74.2± 3.6 kms−1Mpc−1. (9)

Usually, it is more useful to measure the energy density as a fraction of the crit-

ical density, defining the density parameter Ωi = ρi/ρc. The label i represents

different constituents of the Universe, such as radiation or matter. Then, the

Friedmann equation (4) can then be written in such a way to directly relate

the density parameter and the curvature of the Universe as

Ω− 1 =
k

a2H2
. (10)

Thus, the correspondence between the matter content Ω and the space-time

curvature for different k values is:

• Open Universe : 0 < Ω < 1 : k < 0 : ρ < ρc.

• Flat Universe : Ω = 1 : k = 0 : ρ = ρc.

• Closed Universe: Ω > 1 : k > 0 : ρ > ρc.

Current cosmological observations, based on the standard model, suggest the

present value of Ω is (Komatsu et al. 2011)

Ω0 = 1.00± 0.002, (11)

that is, the present Universe is very nearly flat.

Shortcomings

Flatness problem

We notice that an special case of equation (10) is Ω = 1. If at the beginning

the Universe was perfectly flat, then it remains so for all time. Nevertheless,

a flat geometry is an unstable critical situation, that is, even a tiny deviation

from it, Ω would evolve quite different and very quickly the Universe would

become more curved. This can be seen as a consequence due to aH is a

decreasing function of time during radiation or matter domination epoch. We

observe it from (10):

| Ω− 1 | ∝ t radiation domination,

| Ω− 1 | ∝ t2/3 dust domination.

Since the present age of the Universe is estimated to be t0 ' 1017 sec (Larson

et al. 2011), from the above equation we can deduce the required value of

| Ω−1 | at different early-times in order to obtain the correct value of spatial-

geometry at present time. For instance, let us consider some particular epochs

in a nearly flat universe,
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• Decoupling (t ' 1013 sec), we need | Ω− 1 | ≤ 10−3.

• Nucleosynthesis (t ' 1 sec), we need | Ω− 1 | ≤ 10−16.

• Planck epoch (t ' 10−43 sec), we need | Ω− 1 | ≤ 10−64.

Because there is no reason to prefer a Universe with critical density, hence

| Ω− 1 | should not necessarily be exactly zero. Consequently, at early times

| Ω − 1 | have to be fine-tuned extremely close to zero in order to reach its

actual observed value.

Horizon problem

The horizon problem is one of the most important problems in the Big

Bang model, it refers to the communication between different regions of the

Universe. Bearing in mind the Anthropic Cosmological Principle holds (Bar-

row & Tipler 1986; Coles & Lucchin 1995), which is intimately connected with

the existence of the Big Bang, the age of the Universe is a finite quantity and

hence even light should have only travelled a finite distance by any given time.

According the standard cosmology, photons decoupled from the rest of the

components at temperatures about Tdec ≈ 0.3 eV at redshift zdec ≈ 1100,

from this time on photons free-streamed and travelled basically uninterrupted

until reach us, giving rise to the region known as the Observable Universe.

This spherical surface at which decoupling process occurred is called surface of

last scattering. The primordial photons are responsible for the CMB observed

today, then looking at the fluctuations is analogous of taking a picture of the

universe at this time (tdec ≈ 380, 000 yrs old), see Figure 1.

Fig. 1. Temperature fluctuations observed in the CMB using WMAP seven year

data (Gold et al. 2011).

Figure 1 shows light seen in all directions of the sky, these photons ran-

domly distributed have nearly the same temperature T0 = 2.725 K plus small

fluctuations (about one part in one hundred thousand). As we have already

noted, being at the same temperature is a property of thermal equilibrium,

thus observations are easily explained if different regions of the sky have been
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able to interact and moved towards thermal equilibrium. In other words, the

isotropy observed in the CMB might imply that the radiation was homoge-

neous and isotropic in regions located on the last scattering surface.

Oddly, the comoving horizon over which causal interactions occurred be-

fore photons decoupled was significantly smaller than the comoving distance

that radiation travelled after decoupling. This means that photons coming

from separated sky regions by more than the horizon scale at last scatter-

ing, typically about 2◦, would not have been able to interact and established

thermal equilibrium before decoupling. A simple calculation displays that at

decoupling time the comoving horizon was 90 h−1 Mpc and would be stretched

up to 2998 h−1 Mpc at present time. Then, the microwave background should

have consisted of about 104 causally disconnected regions. Therefore, the Big

Bang model by itself does not offer an explanation on why temperatures seen

in opposite sides of the sky are so accurately the same; the homogeneity must

have been part of the initial conditions.

On the other hand, the microwave background is not perfectly isotropic,

but instead exhibits small fluctuations as detected by, initially, the Cos-

mic Background Explorer satellite (COBE) (Smooth et al. 1992) and now,

with improved measurements by the Wilkinson Microwave Anisotropy Probe

(WMAP) (Hinshaw et al. 2009; Larson et al. 2011). These tiny irregularities

are thought to be the ‘seeds’ that grew up until become the structure nowa-

days observed in the Universe.

Monopole problem

Following the line to find out the simplest theory to describe entirely the

laws of the Universe, several models in particle physics were suggested to

unified three of the four forces presented in the Standard Model of Particle

Physics (SM): strong force, described by the group SU(3), weak and electro-

magnetic force, with associated group SU(2)⊗U(1). These classes of theories

are called Grand Unified Theories (GUT) (Georgi & Glashow 1974). An im-

portant point to mention in favour of GUT, is that they are the only theories

which predict the equality electron-proton charge magnitude. Also, there are

good reasons to believe that the origin of baryon asymmetry might have been

generated by GUTs (Kolb & Turner 1983).

Basically, these kind of theories assert that in the early Universe (t ∼
10−43 sec), at highly extreme temperatures (TGUT ∼ 1032 K), existed a unified

or symmetric phase described by a group G. As the Universe temperature

dropped off, it went through many different phase transitions until reach the

matter particles such as electrons, protons, neutrons, photons. When a phase

transition happens, its symmetry is broken, thus the symmetry group changes

by itself. For instance:
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• GUT transition:

G→ SU(3) ⊗ SU(2) ⊗ U(1).

• Electroweak transition:

SU(3) ⊗ SU(2) ⊗ U(1)→ SU(3) ⊗ U(1).

The phase transitions have plenty of implications, one of the most important

is the topological defects production, that depends on the type of symmetry

breaking and the spatial dimension (Vilenkin & Shellard 2000), some of them

are:

• Monopoles (zero dimensional).

• Strings (one dimensional).

• Domain Walls (two dimensional).

• Textures (three dimensional).

Therefore, monopoles are expected to emerge as a consequence of unification

models. Besides that, from particle physics models, monopoles would have

a mass of 106 orders the proton mass. Hence, based on their non-relativitic

character, a crude calculation predicts an extremely high abundance at present

time (Coles & Lucchin 1995)

ΩM ' 1016.

According to this prediction, the Universe would be dominated by magnetic

monopoles. However, in contrast with current observations, no one has found

anyone (Ambrosio 2002).

3. COSMOLOGICAL INFLATION

The inflationary model offers the most elegant way so far proposed to solve

the problems aforementioned and therefore to understand why the universe is

so remarkably in agreement with the standard cosmology. It does not replace

the Big Bang model, but rather it is considered as an ‘auxiliary patch’ which

occurred at the earliest stages without disturbing any of its successes.

Inflation is defined as the epoch in the evolution of the Universe in which

the scale factor is quickly accelerated in just a fraction of a second:

INFLATION ⇐⇒ ä > 0 (12)

⇐⇒ d

dt

(
1

aH

)
< 0. (13)
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The last term corresponds to the comoving Hubble length 1/(aH) which is in-

terpreted as the observable Universe becoming smaller during inflation. This

process allows our observable region to lie within a region that was inside

the Hubble radius at the beginning of inflation, in Liddle (1999) words “is

something similar to zooming in on a small region of the initial universe”, see

Figure 2.

Inflation

Hubble
radius

Now

Comoving

Thermal
equilibrium region

Monday, 18 February 2013

Fig. 2. Schematic behaviour of the comoving Hubble radius during the Inflationary

period

From the acceleration equation (5) we can write the condition for inflation

in terms of the material required to drive the expansion

ä > 0⇐⇒ (ρ+ 3p) < 0. (14)

Because in standard physics it is always postulated ρ as positive, to satisfy

the acceleration condition it is necessary for the overall pressure to have

INFLATION ⇐⇒ p < −ρ/3. (15)

Nonetheless, neither a radiation nor a matter dominated epoch satisfies such

condition. Let us postpone for a while the problem of finding a ‘candidate’

which may satisfy this inflationary condition.

3.1. Solution of the Big Bang Problems

Flatness problem

If this brief period of accelerated expansion occurred, then it is possible

that the aforementioned problems of the Big Bang could be solved. A typical

solution is a universe possessing a cosmological constant Λ, which can be

interpreted as a perfect fluid with equation of state p = −ρ. Having this

condition, since H is constant, we observe from the Friedmann equation (4)

that the universe is exponentially expanded:

a(t) ∝ exp(Ht), (16)
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then, the condition (13) is naturally fulfilled. This epoch is called de Sitter

stage. However, postulating a cosmological constant might create more prob-

lems than solve by itself (Carroll 2001).

Let us look what happens when a general solution is considered. If some-

how there was an accelerated expansion, 1/(aH) tends to be smaller on time

and hence, by the expression (10), Ω is driven towards the unity rather than

away from it. Then, we may ask ourselves by how much should 1/(aH)

decrease. If the inflationary period started at time t = ti and ended up ap-

proximately at the beginning of the radiation dominated era (t = tf ), then

| Ω− 1 |t=tf∼ 10−60,

and

| Ω− 1 |t=tf
| Ω− 1 |t=ti

=

(
ai
af

)2

≡ e−2N . (17)

So, the required condition to reproduce the value of Ω0 today is that inflation

lasted for at least N ≡ ln a ∼> 60, then Ω will be extraordinarily close to one

that we still observe it today. In this sense, inflation magnifies the curvature

radius of the universe, so locally the universe seems to be flat with a great

precision.

Horizon problem

As we have already seen, during inflation the universe expands drastically

and there is a reduction in the comoving Hubble length. This allowed a tiny

region located inside the Hubble radius to evolve and constitute our present

observable Universe. Fluctuations were hence stretched outside of the horizon

during inflation and re-entered the horizon in the late Universe, see Figure 2.

Scales that were outside the horizon at CMB decoupling were in fact inside

the horizon before inflation. The region of space corresponding to the observ-

able universe therefore was in thermal equilibrium before inflation and the

uniformity of the CMB is essentially explained.

Monopole problem

The monopole problem was initially the motivation to develop the Infla-

tionary cosmology (Guth 1997). During the inflationary epoch, the Universe

led to a dramatic expansion over which the density of the unwanted parti-

cles were diluted away. Generating enough expansion, the dilution made sure

the particles stayed completely out of our observable Universe making pretty

difficult to localise a single monopole.
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4. SINGLE-FIELD INFLATION

There currently exists a broad diversity of models that have been pro-

posed for inflation (Liddle & Lyth 2000; Olive 1990; Lyth & Riotto 1999). In

this section we present the scalar fields as good candidates to drive inflation

and explain how relate theoretical predictions to observable quantities. Here,

we limit ourselves to models based on general gravity, i.e. derived from the

Einstein-Hilbert action, and single-field models described by a slow-roll scalar

field φ.

Inflation relies on the existence of an early epoch in the universe dominated

by a very different form of energy; remember the requirement of the unusual

property of a negative pressure. Such condition can be satisfied by a simple

scalar field (spin-0 particle). The scalar field which drives the Universe to an

inflationary epoch is often termed as the inflaton field.

Let us consider a scalar field minimally coupled to gravity, with an arbi-

trary potential V (φ) and Lagrangian density L specified by

S =

∫
d4x
√
−gL =

∫
d4x
√
−g

[
1

2
∂µφ∂

µφ− V (φ)

]
. (18)

The energy-momentum tensor corresponding to this scalar field Lagrangian is

given by

Tµν = ∂µφ∂νφ− gµν L. (19)

In the same way as the perfect fluid treatment, the energy density ρφ and

pressure density pφ in FRW metric are found to be

T00 = ρφ =
1

2
φ̇2 + V (φ) +

(∇φ)2

2a2
, (20)

Tii = pφ =
1

2
φ̇2 − V (φ)− (∇φ)2

6a2
, (21)

with equation of state corresponding to

w =
P

ρ
=

1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (22)

We can now split the inflaton field as

φ(x, t) = φ0(t) + δφ(x, t), (23)

where φ0 is considered a classical field, that is, the mean value of the inflaton

field on the homogeneous and isotropic state, whereas δφ(x, t) describes the

quantum fluctuations around φ0.

The evolution equation for the background field φ0 is given by

φ̈0 + 3Hφ̇0 = −V ′(φ0), (24)
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and moreover, the Friedmann equation (4) with negligible curvature becomes

H2 =
8π

3m2
Pl

[
1

2
φ̇2

0 + V (φ0)

]
, (25)

where we have used primes as derivatives with respect to the scalar field φ0.

From the structure of the effective energy density and pressure, the accel-

eration equation (5) becomes,

ä

a
= − 8π

m2
Pl

(
φ̇2

0 − V (φ0)
)
. (26)

Therefore, the inflationary condition to be satisfied is φ̇2
0 < V (φ0), and it is

easily fulfilled with a suitably flat potential. Now on we will omit the subscript

‘0’ by convenience.

4.1. Slow-roll approximation

As we have noted, a period of accelerated expansion can be created by

the cosmological constant (Λ) and hence solve the problems aforementioned.

After a brief period of time, inflation must end up and its energy being con-

verted into conventional matter/radiation, this process is called reheating. In

a Universe dominated by a cosmological constant the reheating process is seen

as Λ decaying into conventional particles. However, claiming that Λ is able

to decay is still a naive way to face the problem. On the other hand, scalar

fields have the property to behave like a dynamical cosmological constant.

Based on this approach, it is useful to propose a scalar field model starting

with a nearly flat potential, i.e. initially satisfies the condition φ̇2 � V (φ).

In this case the scalar field is slowly rolling down its potential, by obvious

reasons, such approximation is called slow-roll (Liddle & Lyth 1992; Liddle

et al. 1994). Based on this approach, φ̈ is negligible because the Universe is

dominated by the cosmological expansion. The equations of motion (24) and

(25), for slow-roll inflation, then become

3Hφ̇ ' −V ′(φ), (27)

H2 ' 8π

3m2
Pl

V (φ). (28)

It is easily verifiable that the slow-roll approximation requires the slope and

curvature of the potential to be small: V ′, V ′′ � V .

The Inflationary process can be summarised as an accelerated Universe

which takes place when the kinetic part of the inflaton field is subdominant

over the potential field V (φ) term. Then, when both quantities become com-

parable the Inflationary period ends up given rise finally to the reheating

process, see Fig. 3.
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reheating

Fig. 3. Schematic Inflationary process (Baumann & Peiris 2009).

It is now useful to introduce the potential slow-roll parameters εv and ηv

in the following way (Liddle & Lyth 1992)

εv(φ) ≡ m2
Pl

16π

(
V ′ (φ)

V (φ)

)2

, (29)

ηv (φ) ≡ m2
Pl

8π

V ′′ (φ)

V (φ)
. (30)

Equations (27) and (28) are in agreement with the slow-roll approximation

when the following conditions hold

εv(φ)� 1, | ηv(φ) |� 1.

These conditions are sufficient but not necessary, because the validity of the

slow-roll approximations was a requirement in its derivation. The physical

meaning of εv(φ) can be explicitly seen by expressing equation (12) in terms

of φ, then, the inflationary condition is equivalent to

ä

a
> 0 =⇒ εv(φ) < 1. (31)

Hence, inflation ends up when the value εv(φend) = 1 is approached.

Within these approximations, it is straightforward to find out the scale

factor a between the beginning and the end of inflation. Because the size of

the expansion is an enormous quantity, it is useful to compute it in terms of

the e-fold number N defined by

N ≡ ln
a(tend)

a(t)
=

∫ te

t

H dt ' 8π

m2
Pl

∫ φ

φe

V

V ′
dφ. (32)

To give an estimate of the number of e-folds N , let us consider the evolution

of the Universe can be split into different epochs:

• Inflationary era: horizon crossing (k = aH) → end of inflation aend.
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• Radiation era: reheating → matter-radiation equality aeq.

• Matter era: aeq → present a0.

Assuming the transition between one era to another is instantaneous, then

N(k) = ln(ak/a0) can be easily computed with:

k

a0H0
=

akHk

a0H0
=

ak
aend

aend
areh

areh
aeq

aeq
a0

Hk

H0
.

Then, one has (Liddle & Lyth 2000)

N(k) = 62− ln
k

a0H0
− ln

1016GeV

V
1/4
k

+ ln
V

1/4
k

Vend
− 1

3
ln
V

1/4
end

ρ
1/4
reh

.

The last three terms are small quantities related with energy scales during

the inflationary process and usually can be ignored. The precise value for the

second quantity depends on the model as well as the COBE normalisation, ho-

wever it does not present any significant change to the total amount of e-folds.

Thus, the value for total e-foldings is ranged from 50-70 (Lyth & Riotto 1999).

As we noted, the parameters to describe inflation can be presented as

functions of the scalar field potential. That is, specifying an inflationary model

with a single scalar field is just selecting an inflationary potential V (φ). In

order to exemplify our point, let us consider the following example.

The potential which describes a massive scalar field is given by:

V (φ) =
1

2
m2φ2. (33)

Considering the slow-roll approximation, equations (24) and (25) become:

3Hφ̇ = −m2φ, (34)

H2 =
4πm2φ2

3m2
pl

.

Thus, the dynamics of this type of model is described by

φ(t) = φi −
mmpl√

12π
, (35)

a(t) = ai exp

[√
4π

3

m

mpl

(
φit−

mmpl√
48π

t2
)]

,

where φi and ai represent the initial conditions at a given initial time t =

ti. The slow-roll parameters for this particular potential are computed from

equations (29) and (30)

εv = ηv =
m2
pl

4π

1

φ2
, (36)
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that is, an inflationary epoch takes place whilst the condition |φ| > mpl/
√

4π is

satisfied, and the total amount lapse during this accelerated period is encoded

on the e-folds number

Ntot =
2π

m2
pl

[
φ2
i − φ2

e

]
. (37)

The steps shown before might, in principle, apply to any inflationary single-

field model. That is, the general information we need to characterised cosmo-

logical inflation is specified by only its potential.

4.2. Cosmological Perturbations

Inflationary models have the merit that they do not only explain the homo-

geneity of the universe on large-scales, but also provide a theory for explain-

ing the observed level of anisotropy. During the inflationary period, quantum

fluctuations of the field were driven to scales much larger than the Hubble

horizon. Then in this process, the fluctuations were frozen and turned into

metric perturbations (Mukhanov & Chibisov 1997). Metric perturbations cre-

ated during inflation can be described in terms of two types of perturbations.

The scalar, or curvature, perturbations are coupled with matter in the uni-

verse and form the initial “seeds” of structure formation. On the other hand,

although the tensor perturbations do not couple to matter, they are associated

to the generation of gravitational waves. As we shall see, scalar and tensor

perturbations are seen as the important components to the CMB anisotropy

(Hu & Dodelson 2002).

In the same way we have introduced the density parameter for large scales,

on small scales we employ the density contrast defined by δ ≡ δρ/ρ. We now

on assume the density contrast for different species in the Universe satisfies

the adiabatic conditions

1

3
δkb =

1

3
δkc =

1

4
δkγ

(
=

1

4
δk

)
. (38)

The most general perturbation on the density is described by a linear com-

bination between adiabatic perturbation as well as isocurvature perturbation,

which the latter one plays and important role when more than one scalar field

is considered (Liddle & Lyth 2000).

We introduce the primordial curvature perturbation Rk(t), which has the

property to be constant within few Hubble times after the horizon exit given

by k = aH. This constant value is called the primordial value and is related

with the scalar field perturbation δφ by

Rk = −
[
H

φ̇
δφk

]
k=aH

. (39)

Then, the primordial curvature power spectrum PR(k) is computed from

PR(k) =

[(
H

φ̇

)2

Pφ(k)

]
k=aH

. (40)
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When the perturbation part of φ(x, t) in (23) is considered, the equation of

motion for δφ is described by

(δφk )̈ + 3H(δφk)˙ +

(
k

a

)2

δφk = 0, (41)

where we have assumed δφ is linear. This basically means that perturbations

generated by vacuum fluctuations have uncorrelated Fourier modes, the signa-

ture of Gaussian perturbations. After scalar field quantisation, the spectrum

is given by

Pφ(k) =

(
H

2π

)2

k=aH

. (42)

Finally, from (42) and (40) the spectrum of the curvature perturbation is

PR(k) =

[(
H

φ̇

)(
H

2π

)]2

k=aH

. (43)

On the other hand, the creation of gravitational waves corresponds to

the tensor part of metric perturbation hµν in (2). In Fourier space, tensor

perturbation hij can be expressed as the superposition of two polarisation

modes

hij = h+e+
ij + h×e×ij , (44)

where +, × represent the longitudinal and transverse modes. From Einstein

equations it is found that each amplitude h+ and h× behaves as a free scalar

field in the sense that

ψ+,× ≡
mPl√

8
h+,×. (45)

Therefore, each h+,× has a spectrum PT given by

PT (k) =
8

m2
Pl

(
H

2π

)2

k=aH

. (46)

The canonical normalisation of the field ψ+,× was chosen such that, the ratio

of tensor-to-scalar spectra is

r ≡ PT
PR

= 4πε. (47)

During the horizon exit epoch k = aH, H and φ̇ have tiny variations during

few Hubble times. In this case, the scalar and tensor spectra are nearly scale

independent and therefore well approximated by power laws

PR(k) = PR(k0)

(
k

k0

)ns−1

,

PT (k) = PT (k0)

(
k

k0

)nT

. (48)

where the spectral indices are defined as (Lidsey 1997)
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ns − 1 ≡ d lnPR(k)

d ln k
, nT ≡

d lnPT (k)

d ln k
. (49)

A scale-invariant spectrum, called Harrison-Zel’dovich (HZ), has constant

variance on all length scales and it is characterised by ns = 1. Small de-

viations from scale-invariance are also considered as a typical signature of the

inflationary models, then the spectral indices ns and nT can be expressed in

terms of the slow-roll parameters εv and ηv, to lowest order, as:

ns − 1 ' −6 εv(φ) + 2 ηv(φ),

nT ' −2 εv(φ). (50)

The parameters are not completely independent each other, but the tensor

spectral index is proportional to the tensor-to-scalar ratio r = −2πnT . This

expression is considered as the consistency relation for slow-roll inflation.

Hence, any inflationary model, to the lowest order in slow-roll, can be de-

scribed in terms of three independent parameters: the amplitude of density

perturbations δH ≡ 2/5P
1/2
R ≈ 2× 10−5, the scalar spectral index ns, and the

tensor-to-scalar ratio r. In case we need a more accurate description we have

to consider higher-order effects, and then include parameters for describing

the running of scalar (dns/d ln k) and tensor (dnT /d ln k) index.

An important point to emphasised is that δH , r and ns are observable pa-

rameters that nowadays are tested from several experiments. This allows us to

compare theoretical predictions with observational data, for instance, those

provided by the Cosmic Microwave Background radiation. In other words,

future measurements of these parameters may probe or at least constrain the

inflationary models and therefore the shape of the inflaton potential V (φ).

Let us back to the massive scalar field example in equation (33): Inflation

ends up when the condition εv = 1 is achieved, so φend ' mpl/
√

4π. As we

pointed out before, we are interested in models with an e-fold number of about

Ntot = 60, that is

φi = φ60 '
√

30

π
mpl. (51)

Finally, the spectral index and the tensor-scalar ratio for this potential are

ns − 1 = −
m2
pl

πφ2
60

, r =
m2
pl

φ2
60

. (52)

If the massive scalar field potential is the right inflationary model, current

observations should favour the values ns ≈ 0.97 and r ≈ 0.1.
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5. INFLATIONARY MODELS

We have seen that an inflationary model is described by the specification

of the potential form V (φ) relevant during inflation. Then, the comparison

of inflationary model predictions to CMB observations reduces to the follow-

ing basic steps (Kinney et al. 2006): (1) Given a scalar field potential V (φ),

compute the slow roll parameters εv(φ) and ηv(φ). (2) Find out φend by

ε(φend) = 1. (3) From (32), compute the field φ60. (4) Compute r and ns as

functions of φ, and finally evaluate them at φ = φ60 which can be tested by

CMB temperature anisotropy data.

Different types of models are classified by the relation among their slow-

roll parameters ε and η, which can be reflected on different relations between

r and ns. Hence, an appropriate parameter space to show the diversity of

models is well described by the ns—r plane.

5.1. Models

Even if we restrict the analysis to a simple single-field, the number of

inflationary models available is enormous (Liddle & Lyth 2000; Lyth & Riotto

1999; Linde 2005). Then, it is convenient to classify different kinds of scalar

field potentials following (Kinney 2004).

The classification is based on the behaviour of the scalar field potential

during inflation. The three basic types are shown in Figure 4. Large field,

the field is initially displaced from an stable minimum and evolves towards it.

Small field, the field evolves away from an unstable maximum. Hybrid, the

field evolves towards a minimum with vacuum energy different to zero.

A general single field potential can be written in terms of a height Λ and

a width µ as

V (φ) = Λ4f

(
φ

µ

)
. (53)

Different models have different forms for the function f .

5.2. Large-field models: −ε < η ≤ ε

Large field models perhaps posses the simplest type of monomial po-

tentials. These kind of potentials represent the chaotic inflationary scenarios

(Linde 1983). The distinctive of these models is that the shape of the effective

potential is not very important in detail. That is, a region of the Universe

where the scalar field is usually situated at φ ∼ mPl from the minimum of its

potential will automatically lead to inflation, see Figure 5. Such models are

described by V ′′ (φ) > 0 and −ε < η ≤ ε.

A general set of large-field polynomial potentials can be written as

V (φ) = Λ4

(
φ

µ

)p
, (54)
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Fig. 4. Potential classification. From top to bottom: large field, small field and

hybrid potential (Kinney 2004).

V(ϕ)

ϕ

Fig. 5. Chaotic Inflationary potential.

where it is enough to choose the exponent p > 1 in order to specify a particular

model. This model gives

ns − 1 = − 4 + 2p

4N + p
,

r =
4πp

4N + p
. (55)

In this case, gravitational waves can be sufficiently big to eventually be ob-

served (r ∼> 0.1).

From the quadratic potential of equation (33), we obtain

ε ' 0.008, η ' 0.008, ns ' 0.97, r ' 0.1 (56)

In the high power limit the V ∝ φp predictions are the same as the exponential

potential (La & Steinhardt 1999). Hence, a variant of this class of models is
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V(ϕ)

ϕ

Fig. 6. New Inflationary potential.

V (φ) = Λ4 exp (φ/µ) . (57)

This type of potential is a rare case presented in inflation, that is because its

dynamics has an exact solution given by a power-law expansion. For this case

the spectral index ns is closely related to the tensor-to-scalar ratio r, as

ns − 1 = −
m2
pl

8πµ2
,

r = 2π (1− ns) , (58)

as we observe, the slow-roll parameters are explicitly independent of the e-fold

number N .

5.3. Small-field models: η < −ε

Small field models are typically described by potentials which arise nat-

urally from spontaneous symmetry breaking, these type of models are also

known as new inflation (Albrecht & Steinhardt 1982; Linde 1983). In this

case, inflation takes place when the field is situated in a false vacuum state,

very close to the top of the hill and rolls down to a stable minimum, see Fig-

ure 6. These models are typically characterized by V ′′ (φ) < 0 and η < −ε,
usually ε (and hence the tensor amplitude) is closely zero.

Small field potentials, can be written in the generic form as

V (φ) = Λ4 [1− (φ/µ)
p
] , (59)

where the exponent p differs from model to model. V (φ) is usualy considered

as the lowest-order in a Taylor expansion from a more general potential. In the

simplest case of spontaneous symmetry breaking with no special symmetries,

the dominant term is the mass term, p = 2, hence the model gives

ns − 1 ' −4

(
mPl

µ

)2

,

r = 2π(1− ns) exp [−1−N (1− ns)] . (60)



20 VAZQUEZ

On the other hand, p > 2 has a very different behavior. The scalar spectral

index is

ns − 1 = − 2

N

(
p− 1

p− 2

)
, (61)

independent of (mPl/µ). In addition, if it is considered µ < mPl the values of

r are restricted by

r < 2π
p

N (p− 2)

[
8π

Np (p− 2)

]p/(p−2)

. (62)

5.4. Hybrid models: 0 < ε < η

The third class called hybrid frequently includes models which incorpo-

rate supersymmetry into inflation (Linde 1991; Copeland et al. 1994). In

these models, the inflaton field φ evolves towards a minimum of its potential,

however, the minimum has a vacuum energy V (φmin) = Λ4 which is different

to zero. In such cases, inflation continues forever unless an auxiliary field ψ

is added to interact with φ and ends inflation at some point φ = φc. Such

models are well described by V ′′ (φ) > 0 and 0 < ε < η.

The generic potential for hybrid inflation, in a similar way to large field

and small field models are considered, is

V (φ) = Λ4 [1 + (φ/µ)
p
] . (63)

For (φN/µ)� 1 the behaviour of the large-field models is recovered. Besides

that, when (φN/µ) � 1, the dynamics is similar to small-field models, but

now the field is evolving towards a dynamical fixed point rather than away

from it. Because the presence of an auxiliary field, the number of e-folds is

N(φ) '
(
p+ 1

p+ 2

)[
1

η(φc)
− 1

η(φ)

]
. (64)

For φ� φc, N(φ) approaches the value

Nmax ≡
(
p+ 1

p+ 2

)
1

η(φc)
, (65)

and therefore, the spectral index is given by

ns − 1 ' 2

(
p+ 1

p+ 2

)
1

Nmax −N
.

As we can note, the power spectrum is blue (ns > 1) and besides that, the

model presents a running of the spectral index

dns

d ln k
= −1

2

(
p+ 2

p+ 1

)
(ns − 1)

2
. (66)

This parameter will be very useful for higher orders and more accurate con-

straints in future observations. For instance, if it is considered the particular

case with p = 2 and ns = 1.2, the running obtained is dns/d ln k = −0.05

(Kinney & Riotto 1998).
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5.5. Linear models: η = −ε
Linear models, V (φ) ∝ φ, are located on the limit between large field and

small field models. They are represented by V ′′ (φ) = 0 and η = −ε. The

spectral index and tensor-to-scalar ratio are given by

ns − 1 = − 6

4N + 1
, r =

4π

4N + 1
. (67)

5.6. Other models

There still remain several single-field models which cannot fit into this

classification, for instance the logarithmic potentials (Barrow & Parsons 1995)

V (φ) = V0

[
1 + (Cg2/8π2) ln (φ/µ)

]
. (68)

Typically they correspond to loop corrections in a supersymmetric theory,

where C denotes the degrees of freedom coupled to the inflaton and g is a

coupling constant. For this potential, the inflationary parameters are

ns − 1 ' − 1

N

(
1 +

3Cg2

16π2

)
,

r ' 1

N

Cg2

4π
. (69)

In this model, to end up inflation, an auxiliary field is needed, which is the

main feature of hybrid models. However when it is plotted on the ns—r plane,

is located into the small-field region.

0.0
1.11.0

1.0

0.5

0.8

Hybrid
Large
Field

Small
Field

 ns

r

Fig. 7. Classification of the potentials in terms of ns and r parameters.

The classification of inflationary models mentioned previously may be in-

terpreted as an arbitrary one. Although, it is very useful because different

types of models cover different regions of the (ns, r) plane without overlaping,

see Figure 7.
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6. TESTING INFLATIONARY MODELS

How can observations constrain ns and r in inflationary models? During

several years many projects at different scales of the Universe, have been car-

ried out in order to look for observational data to constrain cosmological mod-

els. Among many others, they are: Cosmic Background Explorer (COBE),

Wilkinson Microwave Anisotropy Probe (WMAP), Cosmic Background Im-

ager observations (CBI), Ballon Observations of Millimetric Extra-galactic

Radiation and Geophysics (BOOMERang), the Luminous Red Galaxy (LRG)

subset DR7 of the Sloan Digital Sky Survey (SDSS), Baryon Acoustic Oscil-

lations (BAO), Supernovae (SNe) data, Hubble Space Telescope (HST) and

currently the South Pole Telescope (SPT) and the Atacama Cosmology Tele-

scope (ACT). Below, we show some predictions coming from different types

of inflationary potentials, comparing them with current observational param-

eters (Mortonson et al. 2011). We mention some results that have been ob-

tained on the phase space ns−r. At this stage, our interest is mainly focussed

on the case with no running dns/d ln k = 0.

Figure 8 displays marginalised posterior distributions for ns and r based

on two different types of data sets: WMAP3 by itself, and WMAP3 plus

information from the LRG subset from SDSS. Considering WMAP3 obser-

vations alone (Kinney et al. 2006), the parameters are constrained such that

0.94 < ns < 1.04 and r < 0.60 (95% CL). Those models which present ns < 0.9

are therefore ruled out at high confidence level. The same is applied for models

with ns > 1.05. WMAP data by itself cannot lead to a strong constraints be-

cause the existence of parameter degeneracies, like the well known geometrical

degeneracy involving Ωm, ΩΛ and Ωk. However, when it is combined with di-

fferent types of experiments, together they increase the constraining power and

might remove degeneracies. Furthermore, when the SDSS data are included

the limit of the gravitational wave amplitude is reduced, whereas the spectral

index parameter does not present any relevant change. For WMAP3+SDSS

the constraints imposed on ns and r are 0.93 < ns < 1.01 and r < 0.31

(Kinney et al. 2006).

On the other hand, Figure 9 shows that with WMAP5 data alone, r < 0.43

(95% CL) while 0.964 < ns < 1.008. When BAO and SN data are added, the

limit improves significantly to r < 0.22 (95% CL) and 0.953 < ns < 0.983.

(Komatsu 2009).

Following the same line for inflationary models, we employ the cosmoMC

package (Lewis & Bridle 2002) which allows us to produce some predictions

for the ns and r parameters given a dataset. To illustrate our point, we

consider WMAP seven year data. We observe from Figure 10, that in order

a model to be considered as a favourable candidate it has to predict a small

field with spectral index about ns = 0.982+0.020
−0.019 and a tensor-to-scalar ratio

of r < 0.37 (95% CL). When WMAP-7 is combined with different datasets,

the constraints are tighten as is shown by (Larson et al. 2011).



CONSTRAINING COSMOLOGICAL INFLATION 23

Fig. 8. WMAP3 data sets constraining ns and r parameters. Coloured regions

correspond to 68% and 95% CL (Kinney et al. 2006).

Fig. 9. Constraints on ns and r. WMAP5 results are coloured blue and

WMAP5+BAO+SN red, both on 68% and 95% CL (Komatsu 2009).

Future observations will reach higher accuracy and therefore strengthen

the constraints. We build a simple toy model from an optimistic Planck-like

sensitivity (Planck Collaboration 2006) using the best-fit parameters extracted

from WMAP7 year as a fiducial values (see Figure 11). The constraints on ns

are highly improved using this idealised experiment: ns = 0.968 ± 0.006 and

r < 0.15 with 95% CL.

7. CONSTRAINTS ON INFLATIONARY MODELS

WMAP3 results are shown in Figure 12. Models with ns = 1 are in a

good agreement with CMB data. In particular the Harrison-Zel’dovich model:

ns = 1, r = 0, dns/d ln k = 0, is not ruled out at more than 95% CL from CMB

data alone. Similarly, for inflation driven by a massless self-interacting scalar
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Fig. 10. Marginalised probability constraints on ns and r using only WMAP7 data.

2D constraints are plotted with 1σ and 2σ confidence contours
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Fig. 11. 2D marginalised probability onstraints on ns and r for a particular realisa-

tion at Planck-like sensitivity. 2D constraints are plotted with 1σ adn 2σ confidence

contours.

field V (φ) = λφ4, the contours indicate that this potential with 60 e-folds is

still consistent with the WMAP3 data at 95% CL.

On the other hand, WMAP5 results are summarised in Figure 13: The

model V (φ) = λφ4, unlike WMAP3 constraints, is found to be located far

away from the 95% CL, and therefore it is definitely excluded. For inflation

produced by a massive scalar field V (φ) = (1/2)m2φ2, the model with N = 50

is situated outside the 68% CL, whereas with N = 60 is at the boundary of

the 68% CL. Therefore, this model for the corresponding number of e-folds is

consistent with data within the 95% CL. The points represented by N -flation

describe a model with many massive axion fields (Liddle 1998). For an expo-

nential potential, it is observed that models with p < 60 are mainly excluded.
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Fig. 12. WMAP3 (open contours) and WMAP3+SDSS (filled contours) constraints

on phase space ns, r. Contours with 68% CL and 95% are shown with dashed lines

(Kinney et al. 2006).

Models with 60 < p < 70 are roughly in the boundary of the 95% region, and

p > 70 are in agreement within the 95% CL. Some models with p ∼ 120 can

be located in or outside the 68% CL, essentially they lay out in the limit.

The hybrid potentials, as was already noted, can have different behaviours

depending on the (φ/µ) value. The parameter space can be split into three

different regions based on (φ/µ). For φ/µ � 1 the dynamics is similar to

small fields and the dominant term lays in the region called “Flat Potential

Regime”. For φ/µ � 1 the result is similar to large field models, this region

is called “Chaotic Inflation-like Regime”. The boundary, φ/µ ∼ 1 is named

“Transition regime”. The different (φ/µ) values corresponding to their regions

are shown in Figure 13.

Two recent experiments have placed new constraints on the cosmological

parameters: the Atacama Cosmology Telescope (ACT; Dunkley et al. (2010))

and the South Pole Telescope (SPT; Keisler et al. (2011)). Figure 14 shows

the predicted values for a chaotic inflationary model with inflaton potential

V (φ) ∝ φp with 60 e-folds. We observe that models with p ≥ 3 are disfavored

at more than 95% CL.

8. CONCLUSIONS

Considering the analysis presented here is complicated to prove that a

given model is correct, since these could be just particular cases of more

general models with several parameters involved. However, it is possible to

eliminate models or at least give some constraints on their behaviour leading

to a narrower range of study.

Although we have presented some simple examples of potentials, the clas-

sification in small-field, large-field, and hybrid models is enough to cover the
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Fig. 13. Constraints on large and hybrid models obtained from WMAP5+BAO+SN.

They are shown in contours with 68% and 95% CL (Komatsu 2009).

entire region of the ns–r plane as illustrated in Figure 7. Different versions

of the three types of models predict qualitatively different scalar and tensor

spectra, so it should be particularly easy to work on them apart.

We have seen that, the favoured models are those with small r (for dns/d ln k ∼
0) and slightly red spectrum, hence models with blue power spectrum ns >

1.001 are inconsistent with the recently data. This simple but important

constraint allows us to rule out the simplest models corresponding to hybrid

inflation of the form V (φ) = Λ4(1 + (µ/φ)p). There still remain models with

red spectra in the hybrid classification: inverted models and models with lo-

garithmic potentials.
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Fig. 14. Marginalized 2D probability distribution (68% and 95% CL) for the tensor-

to-scalar ratio r, and the scalar spectral index ns for ACT+WMAP (left panel) and

SPT+WMAP (right panel) (Dunkley et al. 2010; Keisler et al. 2011).

Scale-invariant power spectrum ns = 1 is consistent within 95% CL with

WMAP3 data alone, considering no running of the spectral index. The

HZ spectrum is therefore not ruled out by WMAP3. However, considering

WMAP5 data, Figure 13 shows that HZ spectrum lays outside the 95% CL

region, which indicates it is excluded considering the lowest order on the

ns, r parameters. When WMAP7 data without tensors is considered, scale-

invariant spectrum is totally excluded by more than 3σ, however the inclusion

of extra parameters weaken the constraint on the spectral index, in which

case certain models are still consistent with HZ even for current observations.

When chaotic models V (φ) ∝ φp are analysed with current data, it is found

that quartic models (p = 4) are ruled out, whilst models with p ≥ 3 are dis-

favoured at > 95% CL. Moreover, the quadratic potential V (φ) = 1/2m2φ2

is in agreement with all data sets presented here and therefore remains as a

good candidate. Table 1 summarises the constraints on the ns and r param-

eters and its improvements through the years. Future surveys will provide a

more accurate description of the universe and therefore narrow the number of

candidates which might better explain the Inflationary period.
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